

Touche	Fonction
Ð	Voir historique
· · · · · · · · · · · · · · · · · · ·	Division d'expression
5	Annuler (Jusqu'à 60 étapes)
C	Rétablir (Jusqu'à 60 étapes)
Shift 1	Graphe d'équations
Shift > FX 2	Affecter des équations prédéfinies
Shift 3	Ouvrir la page OXY
#⇔⊟	Conversion fraction/degré
Shift↑ > #↔=	Notation ING/SCI

Fraction & Degré

Touche	Fonction
Shift 1	Saisir une fraction
	Saisir une fraction mixte
Shift 1	Saisir degré : Min : Sec Indicateur
	Convertir le résultat courant en fraction (mixte) et forme en degré

Avis: Activez l'option [Conversion Auto en fraction] dans réglages pour avoir automatiquement la forme en fraction.

Exemple			
Fraction & Degré			
$\frac{2}{7} + \frac{3}{4}$			
<u>29</u> 28	$=$ $\overset{\circ}{}_{\#\leftrightarrow \square}$		
2°45°15°—1°15°	EX OWN F1 4 F2 OWN ORP 1 F2 OWN		
1° 30' 15.00000"	$ \stackrel{\text{GRP}}{1} \stackrel{\text{o}}{1} \stackrel{\text{F2}}{5} = $		

jour chaque fois qu'une expression calculée est affichée. La mémoire Res aide votre calcul à continuer.

Avis: Toutes les variables sont distinctes en mode matrice/vecteur et en mode complexe.

<u>Glisser-déposer:</u> Glisser la valeur (Résultat de calcul) et déposer sur les touches variable pour enregistrer la valeur.

<u>Méthode alternative:</u> Appuyer [Enregistrer sur] suivi de la touche de variable pour enregistrer la valeur courante dans les variables.

Touche	Fonction
M+	Ajouter la valeur affichée à M
M-	Soustraire M de la valeur affichée
~- •	Opérateur d'affectation

<u>Avis:</u>

Toutes les variables sont distinctes en mode matrice/vecteur et en mode complexe. Toutes les Fxs sont synchronisés avec le graphique des équations FX en mode calculatrice.

<u>Avis</u>: Tous les graphes des équations FXs sont synchronisés avec les FXs du mode calculatrice.

Exemple de tracé

Exemple	
0.25 <i>X</i> ² -5	Etape 1: Saisir une équation à inconnu X
Graph OU Shift 1 + GRP	Etape 2: Appuyez [Shift] + [1] (GRAPHE)
Graph Page Action Plot as F1	Etape 3: Sélectionner l'équation voulue.

Touche	Fonction
9	Ouvrir plan d'algèbre Streamline
	Fermer plan d'algèbre Streamline
	CLR

$\int_{0}^{1} \sin(x) + 3x^{2} dx$	
	$-\cos(\chi) + \chi^3$
$(\chi + 5)^3$	
	x^3 + 15 x^2 + 75 x + 125
$\frac{x^{2}+2x-15}{x}$	
Factored	(x - 3)(x + 5)

Le plan d'algèbre Streamline sur iPad

Streamline est une section avancée de l'historique, qui affiche l'historique des calculs. En plus, elle permet de contrôler, éditer et opérer sur les calculs précédents.

Touche	Fonction
Simplify	Simplifier l'équation
Expand	Développer le polynôme
Factor	Factoriser un entier ou un polynôme
Eval ≈	Evaluer le résultat approximatif
Plug In	Affecter les variables aux équations
Save	Enregistrer le résultat dans les variables ou les fonctions Fx

<u>Avis:</u>

+Toutes les opérations apparaissent une fois Streamline est ouvert, l'équation doit être saisi avant d'opérer.
+Toutes les opérations sont appliquées au résultat(final).
+ L'opération affectée est appliquée aux variables X Y Z.
Les autres variables sont affectées automatiquement.

Exemple d'opération d'algèbre

Simplifier	
$\frac{\text{Alg} \text{RAD}}{\text{Input}}$ $\frac{1 - \text{Sin}(x)^2}{\text{Simplified}}$ $\frac{\text{CLR}}{\text{Cos}(x)^2}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ 1 \end{array} \end{array} - \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array}$
Note: $Sin^2(x) + Cos^2(x) = 1$	
Développer	
Input $x^{2}+5$ x-2 $\frac{5}{x-2} + \frac{x^{2}}{x-2}$ Expanded Form $2 + x + \frac{9}{x-2}$	Shift \div X X ² + $\overset{cs}{}$ 5 X - $\overset{rs}{}$ 2 = Expand
Factoriser	
7! Factored CLR 5040 Factored 2 ⁴ 3 ² 5×7	7 X! = Factor
$7! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7, 6$	$= 3 \times 2, 4 = 2 \times 2$
Evaluer	
$\frac{\text{Alc}}{\text{Input}} \xrightarrow{\text{RAD}} \text{CLR}$ $\frac{1}{\sqrt{2}}$ Evaluated 0.7071067811865	Sin π Shiftt \div ⁸ ¹ 4 = Eval \approx

Touche	Fonction
 ###	Insérer l'équation sélectionnée au formulaire de saisie
	Copier l'équation en tant que texte brut
Eval ≈	Evaluer la valeur approximative
Plug (In)	Affecter les variables à l'équation sélectionnée
Simpl Simplify	Simplifier l'équation sélectionnée
Exp Expand	Développer le polynôme sélectionné
Fact Factor	Factoriser le nombre sélectionné/ le polynôme
F1	Enregistrer l'équation sélectionnée /nombre aux fonctions Fxs
X, Y, Z, M	Enregistrer le nombre sélectionné dans les variables X, Y, Z, M

Intégrale

Supported Integral Formulas	
$\int a dx = ax + C$	$\int x^a dx = \frac{x^{a+1}}{a+1} + C$
$\int a^x dx = \frac{a^x}{Ln(a)} + C$	$\int \frac{dx}{x} = Ln x + C$
$\int e^x dx = e^x + C$	$\int Sin(x)dx = -Cos(x) + C$
$\int Cos(x) dx = Sin(x) + C$	$\int Tan(x)dx = -Ln(Cos(x)) + C$
$\int \frac{1}{Sin^2(x)} dx = -CoTan(x) + C$	$\int \frac{1}{\cos^2(x)} dx = Tan(x) + C$
$\int \frac{1}{a+x^2} dx = \frac{1}{\sqrt{a}} Tan^{-1} \left(\frac{x}{\sqrt{a}}\right) + C$	$\int \frac{1}{a - x^2} dx = \frac{1}{\sqrt{a}} Tanh^{-1}\left(\frac{x}{\sqrt{a}}\right) + C$
$\int Sinh(x)dx = Cosh(x) + C$	$\int Cosh(x) dx = Sinh(x) + C$

Intégrale indéfinie

Laisser l'argument droit et gauche vide pour calculer une intégrale indéfinie.