分数 & 角度

注意:在设置 ☆ 当中打开 [自动转换到分数] 选项 自 动得到分数形式的结果。

示例	世ンへ米	-
刀致凶	、'巾'刀姿	X
26÷8		F3 \cdot F3
	31/4	
$\frac{2}{7} + \frac{3}{4}$		EX 2 EX 7 + Ca To 3 E F1 4
	<u>29</u> 28	= #↔≘

示例 分数&带分数 3.25 3° 15' 0.00000" 2°45°15°-1°15° PX 2 F1 4 F2 5 GRP 1 5 0 11 1 0 11 1 0 33 3 GRP 1 GRP 1 5 0 11 1 =1° 30' 15.00000"

Number Conversion	Back
Notation	
3.25E2	SCI
325E0	ENĞ
Degree	
325° 0' 0.00000"	
Mathematical	
1 01000101	BIN
505	OCT
1 45	HEX
Digital: Integer 16 Bits	

计数法/进制数字工具箱

按住屏幕以复制/粘贴 & 导出

↓下拉查看更多示例

示例	
分隔表达式	
2+3;Res+2 7	e^{2} + e^{2} ;; Res + e^{2} =
上面的表达式包含两个子	·表达式。第一个计算 2+3,它的结果在第二个表达式

当中加2

注意: Res 是最近的计算结果。

×↔5;×+5							
	X		^{F2} 5	;;	X	+ 5	
10							
上面的表达式包含两个子	表达式。	第-	-个把	5 赋值:	给 X	第二个计算	X+5 =

上面的表达式包含两个子表达式。第一个把 5 赋值给 X,第二个计算 X+5 = 10 (其中 X = 5)。

左/右结合			
SVI	#→□	V5	

把左边的数字 (或表达式) 代入到求平方根函数

IIII55		IS51
	#→□	
	· · · · · · · · · · · · · · · · · · ·	

把右边的数字(或表达式)代入到求绝对值函数

变量 (扩展)

结果变量

最近的计算结果保存在结果内存;当一个新的计算完成 的表达式显示时,结果内存的内容会进行更新。结果内 存帮助你的计算保持连续。

注意: 所有变量在矩阵/向量模式和复数模式下是不同的。

↓下拉学习如何使用变量。

拖放:拖动值(计算结果)到变量按键以保存这个值。

可选方式:按变量按键前面的 [保存到]按键以保存当前 值到变量。

赋值运算 & M±

示例	
赋值	
M ← 10 10	Shift 1 ^M 9 ↔ ^{Grip} 1 [%] 0 =
赋值 10 给 M, 注意这里 [Shift] + [9] 是 M 按键。
赋值&分隔表	長达式
x ↔ 5; x + 5 10	$X \leftrightarrow ^{F^2}5$;; $X + ^{Ci}^{F^2}5 =$
上面的表达式包含两个子 10 (其中 X = 5)。	·表达式。第一个把 5 赋值给 X,第二个计算 X+5 =

自定义函数 (Fx)

注意:

所有变量在矩阵/向量模式和复数模式下是不同的 所有与图像关联的 Fx 方程都是在计算模式下

示例
通用方程
$$\left(5x^2-43\right)=3x(\frac{x}{2}+5)$$

线性方程组
 $5(x+y)=15;y=8(7+x)$

选择适合目标方程的模式。

↓*下拉显示更多示例*

示例	按键
$2X^{2}-3X+5=0$	
5 RAD	$P^{X}_{2} = - P^{X}_{3} = P^{2}_{5}$
2x ² -3x 5	
X+Y=2 & X-Y=3	
EON RAD 1X 1Y 2 1X -1Y 3	$\begin{bmatrix} GPP \\ 1 \end{bmatrix} = \begin{bmatrix} GPP \\ 1 \end{bmatrix} = \begin{bmatrix} PX \\ 2 \end{bmatrix} = \begin{bmatrix} PX \\ 2 \end{bmatrix} = \begin{bmatrix} T \\ 2 \end{bmatrix}$
=C2 3	

<u>注意:</u>

输入所有必要的系数 (一个接一个地). 键入 系数或按 [向上] 或者 [向下] 选择并更改值。

<u>注意:</u>所有 Fx 方程图像与计算模式下的 Fx 关联

■ 下拉显示一个示例

示例

与普通的基本计算器不同,Calculator Infinity 支持专业的百分数计算。

 $X\% = X \div 100$

!!! Wrong Input !!!

Correct Input

输入的运算符 / 函数 / 表达式的优先级根据下表评 价。有相同优先级的运算符 /函数 /表达式会从左到 右运算。

优先级	运算符/函数/表达式
1 st	括号内表达式 ().
2 nd	需要特殊显示的函数。
	\sqrt{x} , $\sqrt[n]{x}$, $Log_a b$, $ x $, $\frac{x}{y}$, $\int_a^b dx$, C_n^k , P_n^k
3 rd	需要自变量并以一个封闭的括号")"结束的函 数。
	Sin, Cos, Tan, Sin ⁻¹ , Cos ⁻¹ , Tan ⁻¹ , Sinh, Cosh, Tanh, Log, Ln
4 th	在输入值之后的函数。
	X ² , X ³ , X ⁿ , X ⁻¹ , X!, "", d, r, g, %.
5 th	乘法,除法 (x, ÷).
6 th	加法,减法 (+, -).