

Taste	Funktion
3	Verlauf ansehen
· · · · · · · · · · · · · · · · · · ·	Ausdruck teilen
5	Zurück (bis zu 30 Schritte)
C	Vorwärts (bis zu 30 Schritte)
Shift T	Graph Gleichungen
Shift > FX 2	Eigene Gleichung zuweisen
Shift 3	OXY Seite öffnen
#↔⊟	Bruch/Grad Konvertierung
Shiftt ▶ #↔ =	SCI/ENG Schreibweise

Bruch & Grad

Taste	Funktion	
Shift >	Bruch eingeben	
	gemischten Bruch eingeben	
Shift 1	Grad : Min : Sek eingeben Indikator	
	Ergebnis in (gemischten) Bruch oder Grad konvertieren	

Anmerkung: Schalten Sie [Automatisch in Bruch umwandeln] in den Einstellungen 🔀 an, um den Bruch direkt anzuzeigen

Beispiel	
Bruch & Grad	d
$\frac{2}{7} + \frac{3}{4}$	FX 2 B Y Y + 6a fo 3 B F1 4
<u></u> 2 <u>2</u> 8	
2°45°15°-1°15°	EX 0"" F1 4 F2 0"" GRP 1 F2 0""
1° 30' 15.00000"	$\begin{bmatrix} GRP \\ 1 \end{bmatrix} \circ "" \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \# \leftrightarrow \blacksquare & \# \oplus \blacksquare & \blacksquare$

Variablen (erweitert)

Anmerkung: Die Variable sind individuell im Komplex und Matrix/Vektor Modus.

Drag & Drop: Ziehen Sie den Wert (Ergebnis) auf die Taste der Variable

<u>Alternative:</u> Klicken Sie [Speichern als] und die Taste der Variable, um den Wert zu speichern

Taste	Funktion
M+	M hinzufügen
M-	M abziehen
←•	Zuweisungsoperator

zugewiesen und danach X+5 = 10 (mit X = 5) berechnet.

<u>Anmerkung:</u>

Alle Variablen sind individuell für Matrix/Vektor und Komplex Modus Alle F(x) sind gleich den Graph F(x) im Rechner Modus

Gleichung darstellen

Anmerkung: Alle F(x) sind gleich den Graph F(x) im Rechner Modus

Beispiel	
0.25 <i>X</i> ² -5	Schritt 1: x-basierte Gleichung eingeben
Graph ODER Shift1 + GRP	Schritt 2: [Shift] + [1] (GRAPH) drücken
Graph Page Action Plot as F1	Schritt 3: Zielgleichung auswählen

Statistik

Taste	Funktion
Rs Xi+	Ergebnis oder Ausdruck
	in Datenset eintragen
	Statistik Seite öffnen
	(Mittelwert, Summe, Zentralwert)
n	Anzahl an Elementen
Ā	Durchschnitt (Mittelwert)
Σx	Gesamt (Summe)
$\sum x^2$	Gesamt zum Quadrat
σ(x)	Standardabweichung
σ ₋₁ (x)	Standardabweichung der
	ersten N-1 Elemente
PDF	Wahrscheinlichkeitsdichte
	(Allgemeine Normalverteilung)
CDF	Kumulierte Wahrscheinlichkeitsdichte
	(Allgemeine Normalverteilung)

Daten bearbeiten & sortieren

Basis Modus

Art	Beschreibung
Grund-Basis	Die Basis vom Ergebnis
Eigene Basis	Die Basis der Zahl im Ausdruck

Basis Modus Tasten

Taste	Funktion
	Hauptmenü
	Vorherige Berechnung
	Nächste Berechnung
Base	Grund-Basis ändern
2's	Binärkomplement
BASE	Eigene Basis einfügen
<<	Bitweise nach links
>>	Bitweise nach rechts

Anmerkung: Die Ergebnisse werden automatisch in der richtigen Datengröße angezeigt (8, 16, 32 oder 64 bit Ganzzahl).

Basis-Berechnung Beispiele

011 _{BIN} +OF _{HEX}	0001 0010	011 in binär plus 0F in hexadezimal. Das Ergebnis wird binär angezeigt.
001<<2	4	001 in dezimal (Gund-Basis) zwei Positionen nach links. Das Ergebnis wird in dezimal angezeigt.
010 or 101 BIN	0000 0111	010 OR 101 (in binär). Das Ergebnis wird in binär anzeigt (Vorzeichenlose 8 Byte).

<u>\</u> _	0
	<i>a+bi</i> Complex

Taste	Funktion
i	Imaginäre Einheit ($i = \sqrt{-1}$)
r∠θ	Polar (Radius \angle Grad)
Arg	Argument
Conj	Konjugierte
	Ergebnis erweitern
i⇔∠	Ergebnis konvertieren in Polar/Koordinaten Bruch Form

Anmerkung:

+ Fast alle Funktionen (Trigonometrie, Logarithmus, Exponent, Summe, Produkt,...) unterstützten Komplexzahlen.

+ Integral, Ableitung und Gleichungslöser funktionieren nicht im Komplexmodus

Komplex Berechnung Beispiel

Polar / Koord	linaten
5+2i-√2∠45 4+1i	$\int_{-1}^{12} \frac{1}{2} + $
$\sqrt{2}$ \angle 45 ist 1 + i.	
Konjugierte	
Con(5-3i) 5+3i	Conj ^{F2} 5 - ^{F2} 3 <i>i</i>) =
Konjugierte von 5 – 3i	
Argument	
Arg(2+2i) 45	Arg $i^{x}2$ + $i^{x}2$ / () =
Argument von 2 + 2i, z.E	3. der Winkel von 2 + 2i in Polar Form.
Bruch	
$2.5 - (3 \div 2)i$ $\frac{5}{2} - \frac{3}{2}i$	$\begin{bmatrix} x & 2 & x & z \\ 2 & y & z \\ 1 & 3 & z \\ 2 & z \\ 1 & 3 & z \\ 2 & z \\ 1 & z \\ 2 & z \\ 1 & z $

Taste	Funktion
$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	Matrix einfügen/ändern
[]-1	Inverse
	Transponierte
Det	Determinante
Eigen	Eigenwert berechnen
Cramer	Cramer'sche Regel
Cros	Kreuzprodukt (Nur Vektoren)
Dot	Punktprodukt (Nur Vektoren)
[-1-]	Matrix Ergebnis kleiner/größer

Anmerkung:

- + Die Werte von einem leeren Element sind null.
- + Matrizen mit einer Reihe werden als Vektoren behandelt.
- + Fast alle Funktionen (Trigonometrie, Logarithmus, Exponent, Summe, Produkt,...) unterstützten Matrizen/Vektoren.
- + Integral, Ableitung und Gleichungslöser funktionieren nicht im Matrix/Vektor Modus.

<u>Anmerkung</u>: Bewegen Sie den Cursor (I Beam) in die Zielmatrix und klicken Sie $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, um die Größe zu ändern.

Matrix / Vektor Beispiel

Die leeren Elemente sind null.

Transponierte Matrix

Klicken Sie auf [1], um das Ergebnis in Textform anzuzeigen.

Anmerkung: Jedes Element der Matrix ist ein Koeffizient des linearen Gleichungssystems.

Im oberen Beispiel X=-6, Y=4, Z =1, T=0 ist das die einzige Lösung

Modus	Feature
EQN Solve	Quadratischer Gleichungslöser
EQN Solve	Kubischer Gleichungslöser
(YX YX EQNs Solve	Lineares Gleichungssystem mit zwei Unbekannten
X Z Y Z EQNs Solve	Lineares Gleichungssystem mit drei Unbekannten

Wählen Sie den richtigen Modus für Ihre Gleichung.

Gleichung lösen Beispiel

Beispiel	Tasten
$2X^{2}-3X+5=0$	
5	$F^{X}_{2} = -F^{3}_{3} = F^{2}_{5}$
2x ² -3x 5	
X+Y=2 & X-Y=3	
EON RAD 1X 1Y 2 1X -1Y 3	$\begin{bmatrix} GRP \\ 1 \end{bmatrix} = \begin{bmatrix} GRP \\ 1 \end{bmatrix} = \begin{bmatrix} PX \\ 2 \end{bmatrix} = \begin{bmatrix} PX \\ 2 \end{bmatrix} = \begin{bmatrix} PX \\ 1 \end{bmatrix} = \begin{bmatrix} PX \\ - \end{bmatrix} \begin{bmatrix} GRP \\ 1 \end{bmatrix} = \begin{bmatrix} TT \\ 3 \end{bmatrix}$
=C2 3	

Anmerkung:

Geben Sie alle nötigen Koeffzienten ein (einzeln). Klicken Sie auf die Koeffzienten oder auf [Up] oder [Down], um die Werte zu ändern.

Regression

Taste	Funktion
R ^e s Xi+	Ergebnis oder Ausdruck in Datenset einfügen XY, XY, XY
	Regressionsseite öffnen (Art, Gleichung, Fehler)
n	Anzahl an Paaren (X,Y)
Σx	Summe aller X
Σy	Summe aller Y
∑xy	Summe aller XY
∑xy / ∑y	Summe aller XY gteilt durch Summe aller Y

 $\sum xy / \sum y$ würde die Summe aller X im Verhältnis zu Y sein.

Tap to Edit the Value

Taste	Funktion
Ð	Streamline Schema öffnen
	Streamline Schema schließen

Das Streamline Schema auf dem iPad

Streamline ist ein erweiterter Verlauf mit allen Berechnungen. Außerdem können Sie diese vergangenen Berechnungen bearbeiten und benutzen.

Algebra Tasten

Taste	Funktion
Simplify	Gleichung vereinfachen
Expand	Polynom erweitern
Factor	Ganzzahl oder Polynom ausklammern
Eval ≈	Ungefähres Ergebnis evaluieren
Plug In	Variablen in die Gleichung einfügen
Save	Ergebnis in Variablen oder Funktionen speichern

Anmerkung:

+ Alle Operation erscheinen im Streamline Schema, die Gleichung sollte vorher eingegeben werden.

+ Alle Operationen werden auf das letzte Ergebnis angewendet.

+ Die Einfüge-Operation arbeitet mit X Y Z Variablen. Die anderen Variablen werden automatische eingefügt.

Algebra Operationen Beispiel

Vereinfachen	
$\frac{1-Sin(x)^2}{Simplified}$	$ \begin{array}{c} \overset{\text{OPP}}{1} & -\overset{\text{Ps}}{-} & \text{Sin} & X & \end{pmatrix} & X^2 \\ & = & \text{Simplify} \end{array} $
Anmerkung: Sin ² (x) + Cos	$^{2}(x) = 1$
Erweitern	
Input $\frac{x^{2}+5}{x-2}$ $\frac{5}{x-2} + \frac{x^{2}}{x-2}$ Expanded Form $2 + x + \frac{9}{x-2}$	Shift \div 8 X X ² + ^{Ca} F ² 5 X - ^{Fa} F ^x 2 = Expand
Ausklammern	
Alg RAD Input 7! 5040 Factored 2 ⁴ 3 ² 5×7	7 XI = Factor
$7! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7, 6$	$= 3 \times 2, 4 = 2 \times 2$
Evaluieren	
$\frac{\text{ALG}}{\text{Input}} \xrightarrow{\text{RAD}} \text{CLR}$ $Sin\left(\frac{\pi}{4}\right)$ $\frac{1}{\sqrt{2}}$ Evaluated 0.7071067811865	Sin π Shiftt ÷ ⁸ f1 4 = Eval ≈

Algebra Kontextmenü

Taste	Funktion
□_ ###	Ausgewählte Gleichung einfügen
	Die Gleichung als Text kopieren
Eval ≈	Ungefähren Wert evaluieren
Plug (In)	Variablen in die ausgewählte Gleichung einfügen
Simpl Simplify	Ausgewählte Gleichung vereinfachen
Exp Expand	Ausgewähltes Polynom erweitern
Fact Factor	Ausgewählte Zahl / Polynom ausklammern
F1, F2, F3	Ausgewählte Gleichung / Zahl in F(x) Funktion speichern
X, Y, Z, M	Ausgewählte Zahl in X, Y, Z, M Variablen speichern

Unbestimmtes	s Integral	
$\int_{1}^{1} \frac{dG}{dx} + Cos(x) dx$ $\frac{\chi^{3} + Sin(x)}{\chi^{3} + Sin(x)}$	$\int dx = \frac{1}{3} X X^2 + \frac{1}{4} \cos X =$	
Linke & rechte Grenze frei	lassen, um ein unbestimmtes Integral zu berechnen	
Ableitung		
$\frac{\delta(\sin(\chi)+5\chi)}{5+\cos(\chi)}$	δ/dx Sin X) $+^{Ca} = 5$ X =	
Zweites Argument freilass	en um die Ableitung zu berechnen	
Limes berechnen		
$\lim_{x \to +\infty} \left(\frac{2x^2 + 5}{3x^2 + 25} \right)$ $\frac{2}{3}$	Lim ⁸ Shift \div ⁸ F 2 X X ² $+$ ^{Ca} F ² 5 3 X X ² $+$ ^{Ca} F 2 5	
Limes Tasten (iPh	one) Limes Tasten (iPad) Log [§] Lim ^{+∞} Log Lim ^{-∞} Ln[]	

Anmerkung: Nur allgemeine Limes Berechnung wird unterstützt

TLor(F, Variable, Grad, Wert)

Argument	Beschreibung
F	Funktion
Variable	Betrachtete Variable
Grad	Maximaler Grad
Wert	Ein Punkt

TLor gibt die erweiterte Taylorreihe von [F] mit Bezug auf die [Variable] am Punkt [Wert] mit der maximalen Potenz [Grad].

Beispiele

TLor(Sin(χ), χ ,5,0)	CLR
$\frac{1}{120} x^5 - \frac{1}{6} x^3$	+ <u>x</u>
TLor($Ln(\chi),\chi,3,1$)	CLR
$\frac{1}{3} x^3 - \frac{3}{2} x^2 + 3 x - \frac{3}{2} x^2$	$-\frac{11}{6}$

