Calculadora

Tecla	Función
9	Navegar Historial
;;	Separar Expresiones
5	Deshacer (hasta 30 pasos)
C	Rehacer (hasta 30 pasos)
Shift 1 GRP	Graficar Ecuaciones
Shift 1 FX 2	Asignar Ecuaciones Personalizadas.
Shift 3	Abrir Página OXY
#↔⊟	Conversión Fracción/Grado
Shift↑ > #↔=	Notación SCI/ENG

Fracción & Grado

Tecla	Función	
Shift 1	Ingresar una Fracción	
	Ingresar una Fracción Mixta	
Shift 1	Ingresar Indicador de Grado : Min : Sec	
⊕⊒	Convertir resultado actual a Fracción (Mixta) y Formato Grado	

Nota: Nota: Activa la opción [Auto convertir a Fracción] en Configuración 🎘 para obtener automáticamente Formato Fracción.

Example	
Fraction & D	egree
$\frac{2}{7} + \frac{3}{4}$	
<u>29</u> 28	
2°45°15°-1°15°	FX o"' F1 F2 o"' GFP F2 o"' 1 5 o"' 1 5 o"'
1° 30' 15.00000"	$\begin{array}{c} \text{Grp} \\ 1 \end{array} \circ "" \begin{array}{c} \text{Grp} \\ 1 \end{array} \end{array} \begin{array}{c} \text{F}^2 \\ 5 \end{array} \end{array} = \begin{array}{c} \text{H} \leftrightarrow \text{H} \\ \text{H} \leftrightarrow \text{H} \end{array} \begin{array}{c} \text{H} \leftrightarrow \text{H} \\ \text{H} \leftrightarrow \text{H} \end{array}$

Variables (Extensión)

memoria Res; su contenido se actualiza cada vez que se muestra una nueva expresión de cálculo. La memoria Res ayuda a la continuidad de tus cálculos.

Nota: Todas las variables se diferencian en Modo Matriz/Vector y Modo Complejo

Guardar en Variables

<u>Arrastre & Suelte:</u> Arrastre el valor (Resultado del Cálculo) y suelte sobre la Tecla Variable para guardarlo.

Forma Alternativa: Presiona [Guardar en] seguido de la Tecla Variable para guardar el resultado actual en Variables.

Tecla	Función
M+	Sumar a M el Valor Actual
M-	Restar de M el Valor Actual
~ +	Asignar Operador

Ejemplo	
Asignación	
M ← 10 10	Shift M 9 $\leftarrow 1 0 =$
Asignar 10 a M, Nota qu	e [Shift] + [9] es la Tecla M.
Asignar & Se	parar Expresión
X ← 5; X +5 10	$X \leftrightarrow ^{2}5$;; $X + ^{3}^{5}5$
La expresión de arriba c	ontiene dos sub expresiones. La 1 ^{ra} asigna 5 a X, la

siguiente calcula X+5 (donde X = 5).

Funciones Personalizadas (Fx)

<u>Nota:</u>

Todas las variables se diferencian en Modo Matriz/Vector y Modo Complejo. Todas las Fxs se sincronizan con Ecuaciones Gráficas Fx en Modo Calculadora

Graficar Ecuaciones

<u>**Nota:**</u> Todos los Gráficos de Ecuaciones Fx están sincronizadas con Fxs en Modo Calculadora

Ejemplo	
0.25 <i>X</i> ² -5	Paso 1: Ingrese Ecuación de Base-X
Graph OR Shiftt + GRP	Paso 2: Presione [Shift] + [1] (GRAPH)
Graph Page Action Plot as F1	Paso 3: Seleccione la Ecuación Objetivo.

Resolver Ecuaciones Generales

Estadísticas

Tecla	Función
R [®] Xi+	Insertar Resultado o Expresión Actual en el Data Set
	Abrir Página Estadística (Media, Suma, Mediana)
n	Cantidad de elementos
Ā	Valor Promedio (Media)
Σx	Valor Total (Suma)
$\sum x^2$	Cuadrado del Valor Total
σ(x)	Desviación Estándar
σ ₋₁ (x)	Desviación Estándar de
	Primeros N-1 Elementos
PDF	Función de densidad de probabilidad (Distribución Normal General)
CDF	Función de distribución (Distribución Normal General)

Editar & Ordenar Datos

Modo Base

Tipo	Descripción
Base Por Defecto	Base del Resultado.
Base Personalizada	Base del Número en la Expresión.

Teclas Modo Base

Tecla	Función
	Menú Principal
	Cálculo Previo
	Cálculo Siguiente
Base	Cambiar Base por Defecto
2's	Complemento a Dos
BASE	Insertar Base Personalizada
<<	Desplaza Izquierda en modo Bit
>>	Desplaza Derecha en modo Bit

Nota: El resultado se mostrará en tamaño adecuado automáticamente (8, 16, 32 o 64 bit entero con o sin signo)

Ejemplos de Cálculo de Base

011 _{BIN} +0F _{HEX}	0001 0010	011 en Binario más 0F en Hexadecimal. El resultado se muestra en Binario.
001<<2		001 en Decimal (Base por Defecto) desplazado a la izquierda 2 posiciones El
DEC	4	resultado se muestra en Decimal.
0100r101		010 o 101 (En Binario). El resultado se muestra en
BIN	0000 0111	Binario (8 Bytes sin signo).

	a+bi omplex
Tecla	Función
i	Unidad Imaginaria ($i = \sqrt{-1}$)
r∠θ	Polar (Radio 🛆 Ángulo)
Arg	Argumento
Conj	Conjugada
	Ampliar el Resultado
° i⇔∠	Convertir el resultado a Formato Fracción Polar/Coordenadas

Nota:

+ Otras funciones (Trigonométrica, Logarítmica, Exponencial, Suma, Producto,...) soportan números complejos.

+ Integral, Derivada y Resolución de Ecuaciones no están soportadas en modo complejo.

Ejemplo de Cálculo Complejo

Polar / Coordenadas $5+2i-\sqrt{2} \swarrow 45$ $5 + 2 i^{\alpha}$ √ ^{FX}2 r∠θ ^{F1}4 5 4 + 1i $\sqrt{2}$ $\angle 45$ es 1 + i. Conjugada Con(5-3i)Conj $^{12}5$ $-^{14}3$ i^{2}) = 5 + 3iConjugada de 5 – 3i Argumento Arg(2+2i)Arg 2 + 2 $i^2 = i^2$ $i^2 = i^2$ 45 Argumento de 2 + 2i, p.ej. el ángulo de 2 + 2i en Formato Polar. Fracción FX 2 · F2 5 $2.5 - (3 \div 2)i$ ÷⁸ ²) *i*² (3 $\frac{5}{2} - \frac{3}{2}i$ $= \begin{bmatrix} \circ & \circ \\ i \leftrightarrow Z & i \leftrightarrow Z \end{bmatrix}$

Tecla	Función
$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	Insertar/Redimensionar Matriz
	Inversa
	Transpuesta
Det	Determinante
Eigen	Calcular Vector Propio
Cramer	Solución de Regla de Cramer
Cros	Producto Vectorial (Sólo Vector)
Dot	Producto Escalar (Sólo Vector)
[-1-]	Expandir / Colapsar Matriz Resultado

<u>Nota:</u>

- + El valor por defecto de elementos en blanco es cero.
- + Matrices de una fila son tratadas como vectores.

+ Otras funciones (Trigonométrica, Logarítmica, Exponencial, Suma, Producto,...) soportan números complejos.

+ Integral, Derivada y Resolución de Ecuaciones no están soportadas en modo complejo.

Insertar/Redimensionar Matriz & Vector

<u>Nota</u>: Mueva el cursor (I Beam) en la matriz objetivo y luego presione $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ para redimensionarla.

Ejemplo Matriz / Vector

Matriz Inversa

Los elementos en blanco son cero. Producto Vectorial

Matriz Transpuesta

Presione 🗊 para convertir el resultado a texto.

Nota: Cada elemento de la matriz debe coincidir con cada coeficiente en el sistema lineal. En ejemplo anterior X=-6, Y=4, Z =1, T=0 es solución única.

Solución Ecuaciones Comunes

Modo	Función
EQN Solve	Solución de Ecuación Cuadrática
EQN Solve	Solución de Ecuación Cúbica
YX YX EQNs Solve	Solución Sistema de Ecuaciones Lineales de 2 incógnitas
X Z Y Z EQNs Solve	Solución Sistema de Ecuaciones Lineales de 3 incógnitas

Seleccione el modo adecuado para ecuaciones objetivo.

Ejemplo Solución de Ecuación

Ejemplo	Teclas presionadas
$2X^{2}-3X+5=0$	
5	$F^{X}_{2} = -F^{3}_{3} = F^{2}_{5}$
2x ² -3x 5	
X+Y=2 & X-Y=3	
EON RAD 1X 1Y 2 1X -1Y 3	$\begin{bmatrix} GPP \\ 1 \end{bmatrix} = \begin{bmatrix} GPP \\ 1 \end{bmatrix} = \begin{bmatrix} PX \\ 2 \end{bmatrix} = \begin{bmatrix} PX \\ 2 \end{bmatrix} = \begin{bmatrix} PX \\ 1 \end{bmatrix} = \begin{bmatrix} PX \\ - \end{bmatrix} \begin{bmatrix} PX \\ 2 \end{bmatrix} = \begin{bmatrix} P$
=C2 3	

Nota:

Ingrese todos los coeficientes necesarios (uno por uno). Toque los coeficientes o presione [Arriba] o [Abajo] para seleccionar y cambiar el valor.

Regresión

Tecla	Función
R [®] Xi+	Inserte Resultado o Expresión Actual en Data Set XY, XY, XY
	Abrir Página Regresión (Tipo, Ecuación, Error)
n	Número de Pares (X,Y)
Σx	Sumatoria de X
Σy	Sumatoria de Y
∑xy	Sumatoria de XY
∑xy / ∑y	Sumatoria de XY dividido por Sumatoria de Y

 $\sum xy / \sum y$ se considerarán como Sumatoria de todo valor peso X / peso total, donde peso es y.

Datos & Regresión

Tap to Edit the Value

Tecla	Función
Ð	Abrir Optimizar Esquema
	Cerrar Optimizar Esquema
	CLR

$\sin(x) + 3x^2 dx$	CLR
JO	
	$-Cos(\mathbf{x}) + \mathbf{x}^3$
Input	
$(x+5)^3$	
	x^3 + 15 x^2 + 75 x + 125
Input	
<mark>x²+2x</mark> -15	
Factored	
	(x - 3)(x + 5)

Esquema Optimizado en iPad

Optimizar es una sección avanzada del historial, que muestra el historial de cálculo. Además permite controlar, editar operar con los cálculos previos.

Tecla	Función
Simplify	Simplificar Ecuación
Expand	Ampliar Polinomio
Factor	Factorizar un Entero o un Polinomio
Eval ≈	Evaluar Resultado Aproximado
Plug In	Insertar Variables en la Ecuación
Save	Guardar el Resultado en Variables o Funciones Fx

Nota:

+ Todas las operaciones aparecen cuando se abre optimizar, la ecuación debe ingresarse antes de operar.
+ Todas las operaciones se aplican al resultado final.
+ Insertar Operación se aplica a las variables X Y Z. Las otras variables se insertan automáticamente.

Ejemplo Operación Algebraica

Simplificar	
$\frac{\text{AlG} \text{RAD}}{\text{Input}}$ $\frac{1 - \text{Sin}(\textbf{X})^2}{\text{Simplified}}$ $\frac{\text{CLR}}{\text{Cos}(\textbf{X})^2}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} = \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} $ $\begin{array}{c} \\ \end{array} \end{array} X \end{array}) X^2 \end{array}$
Note: $Sin^2(x) + Cos^2(x) = 1$	
Ampliar	
Input $\frac{x^{2}+5}{x-2}$ $\frac{5}{x-2} + \frac{x^{2}}{x-2}$ Expanded Form $2 + x + \frac{9}{x-2}$	Shift \div X X^2 $+$ $\overset{ca}{}$ 5 X $ \overset{ra}{}$ 2 = Expand
Factorizar	
All RAD Input CLR 7! 5040 Factored 2 ⁴ 3 ² 5×7	7 X! = Factor
$7! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7, 6$	$= 3 \times 2, 4 = 2 \times 2$
Evaluar	
$\frac{\text{ALG}}{\text{Input}} \xrightarrow{\text{RAD}} \text{CLR}$ $Sin\left(\frac{\pi}{4}\right)$ $\frac{1}{\sqrt{2}}$ Evaluated 0.7071067811865	Sin π Shiftt ÷ ⁸ ¹ 4 = Eval ≈

Tap To Open Context Menu $-x^2 + 10 x + 25$ R = 10 x + 25Plug Eval Simpl >

Tecla	Función
 ###	Insertar la ecuación seleccionada en Formato Imput
	Copiar la ecuación como Texto
Eval ≈	Evaluar Valor Aproximado
Plug (In)	Insertar Variables a la Ecuación Seleccionada
Simpl Simplify	Simplificar Ecuación Seleccionada
Exp Expand	Ampliar Polinomio Seleccionado
Fact Factor	Factorizar el Número / Polinomio Seleccionado
F1, F2, F3	Guardar Ecuación / Número Seleccionado a Funciones Fx
X, Y, Z, M	Guardar el Número Seleccionado en Variables X, Y, Z, M

Integral Indefi	nida
$\int_{1}^{\text{Input}} \frac{\text{CLR}}{3 \times 2 + \cos(\times) dx}$ $\frac{1}{2} \times \frac{3 \times 2 + \cos(\times) dx}{1 \times 3 + \sin(\times)}$	$\int dx = \frac{1}{3} X X^2 + \frac{1}{4} \cos X =$
Deje argumentos derecho	& izquierdo vacíos para calcular integral indefinida
Derivada	
$\frac{\delta(\sin(\chi)+5\chi,)}{5+\cos(\chi)}$	δ/dx Sin X) $+^{Ca} = 5$ X =
Deje el segundo argument	to vacío para calcular la derivada de una ecuación
Cálculo de Lír	nite
$\lim_{X \to +\infty} \left(\frac{2 \times ^2 + 5}{3 \times ^2 + 25} \right)$ $\frac{2}{3}$	Lim Shift \div 8 FX 2 X X ² $+$ Ca F ² 5 To 3 X X ² $+$ Ca FX 2 F ² 5
Teclas Límite (iPh	one) Teclas Límite (iPad) Log [®] Lim⁺∞ Lim⁻∞ Log Lim1

Nota: Sólo soporta algunos tipos comunes de problemas de cálculo de límite.

TLor(F, Variable, Grado, Valor)

Argumento	Descripción
F	Función
Variable	Variable Respetada
Grado	Grado Máximo
Valor	Un Punto

TLor devuelve la ampliación de la Serie de Taylor de [F] respect de [Variable] en el punto [Valor] a la máxima expansión de potencia [Grado].

