Touche	Fonction		
Shift 1	Saisir une fraction		
	Saisir une fraction mixte		
Shift 1	Saisir un degré : Min : Sec Indicateur		
	Convertir le résultat courant en fraction(mixte) et forme en degré		

Avis: Activez l'option [Conversion Auto en fraction] dans réglages pour avoir la forme en fraction automatiquement.

■ Faites defiler en bas pour plus d'exemples

Exemple Fraction & fraction mixte

3.25	¹⁰ 3	0# •	EX 2	^{F2} 5	=	° #↔⊟	° #⇔⊟	° #⇔⊡
3° 15' 0.00000"								
2°45°15°-1°15°	EX 2	0"'	F1 4	F2 5	0,11,1	GRP 1	F2 5	0111
1° 30' 15.00000"	GRP 1	0""	GRP 1	F ² 5] =	@#⇔⊟	#⇔⊟	#⇔⊟

ToucheFonctionShift#++--Fenêtre de notation/boîte de base

Number Conversion	Back
Notation	
3.25E2	SCI
325E0	ENĞ
Degree	
325° 0' 0.00000"	
Mathematical	
1 01000101	BIN
505	OCT
1 45	HEX
Digital: Integer 16 Bits	

Notation/Boîte de base de nombre

Touche	Fonction
9	Parcourir l'historique
;;;	Diviser l'expression
5	Annuler (Jusqu'à 30 étapes)
¢	Refaire (Jusqu'à 30 étapes)
#→□	Joindre à gauche
#→□	Joindre à droite

Maintenez enfoncé l'écran pour copier / coller & exporter *Faites defiler en bas pour plus d'exemples*

L'expression ci-dessus contient deux sous-expressions.La première calcule 2+3, son résultat sera ajouté par la deuxième dans l'expression suivante. *Avis: Res est le résultat du dernier calcul.*

×↔5;×+5							
	X	 ^{F2} 5	;;	X	+	^{F2} 5	=
10							

L'expression ci-dessus contient deux sous-expressions. La première affecte 5 à X, la seconde calcule X+5 = 10 (où X = 5).

Joindre à droite/à gauche

Placer le nombre(ou l'expression) à droite vers la fonction valeur absolue.

Variables (Développement)

Res

Le dernier résultat de calcul est enregistré dans la mémoire Res; Le contenu de la mémoire Res est mis à jour chaque fois qu'une expression calculée est affichée. La mémoire Res aide votre calcul à continuer.

Avis: Toutes les variables sont distinctes en mode matrice/vecteur et mode complexe.

Faites défiler en bas pour apprendre comment utiliser les variables.

<u>Glisser-déposer:</u> Glisser la valeur(Résultat calcul) et déposer sur les touches variable pour enregistrer la valeur.

<u>Méthode alternative:</u> Appuyer [Enregistrer sur] suivi de la touche de variable pour enregistrer la valeur courante dans les variables.

Touche	Fonction				
M+	Ajouter la valeur affichée à M				
M-	Soustraire M de la valeur affichée				
←•	Opérateur d'affectation				
Exemple					
M ← 10	Shift $9 \leftrightarrow 1^{8} 0 =$ 10				
Affecter 10 à M, remarquez que [Shift] + [9] est la touche M.					
x ↔ 5; x + 5	$X \leftrightarrow f^2 5 ;; X + f^2 5 = 10$				
L'expression ci première affecte	i-dessus contient deux sous-expressions.La e 5 à X, la seconde calcule X+5 (où X=5).				

Fonctions personnalisées(Fx)

<u>Avis:</u>

Toutes les variables sont distinctes en mode matrice/vecteur et en mode complexe.

Tous les Fxs sont synchronisées avec le graphique des équations FX en mode calculatrice.

Touche	Fonction
EQN Solve	Solveur de function quadratique
EQN Solve	Solveur d'équation cubique
Y X Y X EQNs Solve	Système d'équations linéaires à solveur de 2 inconnus
X Z Y Z EQNs Solve	Système d'équations linéaires à solveur de 3 inconnus
Selectionnez le mod	de approprié pour les équations

Selectionnez le mode approprié pour les équations saisies.

Faites defiler en bas pour plus d'exemples.

Exemple	Touches appuyées
$2X^{2}-3X+5=0$	
5	$F^{x}_{2} = -F^{a}_{3} = F^{2}_{5}$
2x ² -3x 5	
X+Y=2 & X-Y=3	
EON RAD 1X 1Y 2 1X -1Y 3	$\begin{bmatrix} GPP \\ 1 \end{bmatrix} = \begin{bmatrix} PX \\ 1 \end{bmatrix} = \begin{bmatrix} PX \\ 2 \end{bmatrix} = \begin{bmatrix} PX \\ 2 \end{bmatrix} = \begin{bmatrix} PX \\ 1 \end{bmatrix} = \begin{bmatrix} PX \\ - \end{bmatrix} \begin{bmatrix} PX \\ 2 \end{bmatrix} = \begin{bmatrix} PX$
=C2 3	

<u>Avis:</u>

Saisir tous les coefficients nécessaires (un par un). Tapez les coefficients ou appuyez sur [Haut] ou [Bas] pour selectionner et changer la valeur.

Opérer sur le convertisseur d'unité

Avis: Le résultat courant sera utilisé en tant que valeur de base dans le convertisseur

♣ Faites defiler en bas pour plus d'exemple.

Catégories d'unités

Longueur	Densité commune
Air	Energie
Volume	Charge électrique
Masse	Puissance
Vitesse	Illumination
Vitesse angulaire	Radioactivité
Accéleration linéaire	Donnée
Accéleration angulaire	Temps
Débit du flux volumique	Température
Pression	Combustion du fuel
Force	

Total:

21 Catégories & 400+ Unités

Tableau de constante

Constante	Description	Valeur
A ₀	Rayon de Bohr	5.291772086E-11
A ₁	Deuxième constante de rayonnement 1.438777000E-02	
С	Vitesse de la lumière dans le vide	2.997924580E+08
E	Charge élémentaire	1.602176487E-19
e ₀	Constante électrique	8.854187817E-12
ev	Électron-volt	1.602176565E-19
F	Constante de Faraday	9.648534150E+04
Fc	Constante de couplage de Fermi	1.166364000E-05
FR	Première constante de rayonnement	3.741771530E-16
Fs	Constante de structure fine Alpha	7.297352570E-03
G	Constante newtonienne de la gravitation	6.674280000E-11
Gn	Accélération normale de la pesanteur	9.806650000E+00
Н	Constante de Planck	6.626068960E-34
J	Constante de Josephson	4.835978700E+14
JC	Constante de Joule	4.81600000E+00
K	Constante de Boltzmann	1.380650400E-23
kC	Constante de Coulomb	8.987551800E+09
L	Constante de Loschmidt	2.651646200E+25
Μ	Constante molaire des gaz	8.314472000E+00
Me	Masse d'électron	9.109382150E-31
Mn	Masse du neutron	1.674927211E-27
	Accélération de la Lune due à la	
Moonacc	gravité sur sa surface	1.62000000E+00
Moone	Vitesse de libération à la surface de la Lune	2.38000000E+03
MoonMa	Masse de la Lune	7.35000000E+22
MoonMe	Densité moyenne de la Lune	3.343000000E+03
MoonMe	La distance moyenne entre la Lune de la Terre	3.844000000E+08
MoonR	Rayon de la Lune	1.738000000E+06

Faites défiler en bas pour plus de constantes

Constante	Description	Valeur
Мр	Masse du proton	1.672621637E-27
Mu	Constante de la masse atomique	1.660538782E-27
Na	Constante d'Avogadro	6.022141790E+23
R	Constante de Rydberg	1.097373157E+07
S	Constante de Stefan-Boltzmann	5.670320000E-08
Sosa	Vitesse du son dans l'air (20 ° C)	3.43000000E+02
Sosw	Vitesse du son dans l'eau (20 ° C)	1.402000000E+03
ST	Constante de Sackur-Tetrode	-1.151707800E+00
	Accélération du Soleil due à la	
SunAcc	gravité sur sa surface	2.740000000E+02
SunMa	Masse du Soleil	1.989000000E+30
SunMe	Densité moyenne du Soleil	1.408000000E+03
SunP	Puissance solaire produite	3.826000000E+29
SunR	Rayon du Soleil	6.959900000E+08
t	Température en Celsius	2.731500000E+02
u0	Constante magnétique	1.256637061E-06
vK	Constante de Von Klitzing	2.581280744E+04
Vm	Volume molaire des gaz parfaits	2.241399600E-02

<u>Avis</u>: Tous les graphes des équations FXs sont synchronisés avec les FXs du mode calculatrice.

Utiliser le solveur à règle de Cramer (ou fonction) pour résoudre un système linéaire à N équations, où N max vaut 7.

Fonction

Matrix Vector	Etape 1: Passer en mode matrice/vecteur
Cramer	Etape 2: Entrer les fonctions de la règle de Cramer
$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	Step 3: Insérer une matrice qui représente le système linéaire des équations
1X + 2Y + 3Z + 4T = 5 6X + 7Y + 8Z + 9T = 0 2X + 4Y + 1Z + 3T = 5 5X + 7Y + 8Z + 9T = 6 \blacksquare \blacksquare \square \square \square \square \square \square \square \square	Etape 4: Entrer le coefficient Chaque ligne de la matrice doit correspondre à chaque équation du système linéaire.

Calculator Infinity supporte les calculs pourcent professionnels, qui sont différents de la calculatrice basique normale.

$$X\% = X \div 100$$

Example: 150 increase 30% = ?

$$150 + 30\% = 150.3$$

!!! Wrong Input !!!

Correct Input

La priorité d'opérations saisies/fonctions/ expressions est évaluée suivant le tableau cidessous. L'opération / fonctions / expression avec la même priorité vont être calculer du gauche vers la droite.

Priorité	Opération/Fonctions/Expressions
1 ^{ère}	Expressions à parenthèses ().
2 ^{ème}	Les fonctions qui nécessitent un affichage particulier.
	\sqrt{x} , $\sqrt[n]{x}$, $Log_a b$, $ x $, $\frac{x}{y}$, $\int_a^b dx$, C_n^k , P_n^k
3 ^{ème}	Fonctions qui nécessitent une(des) argument(s) et se terminent par une parenthèse fermante")".
	Sin, Cos, Tan, Sin ⁻¹ , Cos ⁻¹ , Tan ⁻¹ , Sinh, Cosh, Tanh, Log, Ln
4 ^{ème}	Fonctions qui viennent après une valeur d'entrée X ² , X ³ , X ⁿ , X ⁻¹ , X!, [°] ", d, r, g, %.
5 ^{ème}	Multiplication, Division (x, ÷).
6 ^{ème}	Addition, Soustraction $(+, -)$.

Les inégalités ne sont pas officiellement supportées par Calculator Infinity. Cependant, Graph est une fonctionnalité pratique pour les résoudre.

Premièrement, toutes les inégalités doivent être simplifiées à F(X) > 0 ou F(X) < 0. Veuillez remarquer que la partie droite des inégalités doit être multipliée par moins un (-1) une fois déplacée vers la partie gauche.

Deuxièmement, tracez F(X) sur le plan Oxy. Les surfaces en haut ou en bas de l'axe OX(Suivant différentes inégalités) seront solution de ces inégalités.

Troisièmement, utilisez l'outil Snap ⁹ pour avoir des segments de la solution.

Par exemple:

 $0.25X^2 > 36$ Doit être simplifié à: $0.25X^2 - 36 > 0$ où F(X) = $0.25X^2 - 36$.

$F(X) = 0.25X^2 - 36$ dans la page de graph

Utiliser l'outil Snap pour avoir l'intersection

Les surfaces en haut de sont solution de l'inégalité $0.25X^2 - 36 > 0$. En effet, les valeurs de X doivent être inférieures à -12 et supérieures à 12.