分数 & 角度

按键	功能
Shift 1	输入一个分数
	输入一个带分数
Shift 1	输入一个度:分:秒 指示器
€	转换当前结果到 (带) 分数和角度形式

注意:在设置 ☆ 当中打开 [自动转换到分数] 选项 自 动得到分数形式的结果。

示例	世公米	h
	,中乃亥	X
26÷8		$^{\text{F3}}6 \div ^{\text{F3}}8 = \# \leftrightarrow \# \leftrightarrow \#$
	31/4	
$\frac{2}{7} + \frac{3}{4}$		^{FX} 2 ^{FX} 2 ^H 3 ^{F1} 4
	<u>29</u> 28	= #↔≘

示例 分数&带分数 3.25 3° 15' 0.00000" 2°45°15°-1°15° FX 2 F1 4 GRP F2 5 0 11 1 0 11 1 5 0 33 3 GRP 1 GRP 1 5 0 11 1 =1° 30' 15.00000"

计数法 & 进制转换

Number Conversion	Back
Notation	
3.25E2	SCI
325E0	ENĞ
Degree	
325° 0' 0.00000"	
Mathematical	
1 01000101	BIN
505	OCT
1 45	HEX
Digital: Integer 16 Bits	

计数法/进制数字工具箱

表达式 & 编辑/导出

按键	功能
3	浏览历史
;;	分隔表达式
5	撤销 (最多 30 步)
C	恢复 (最多 30 步)
#→□	左结合
#→□	右结合
	$Save Image: Do You want to save The Expression to 405x54 PNG Image in Your Photo Gallery? Yes No Return To Home Screen Save Image: Do You want to save The Expression to 405x54 PNG Image in Your Photo Gallery? Yes No Save Image: Do You want to save The Expression to 405x54 PNG Image in Your Photo Gallery? Yes No Save Image: Do You want to save The Expression to 405x54 PNG Image in Your Photo Gallery? Yes No Save Image: Do You want to save The Expression to 405x54 PNG Image in Your Photo Gallery? 12 + \sqrt{25} + 5(\frac{3M}{4}) + Log_{7}(\frac{12}{5}) - 22.3$

按住屏幕以复制/粘贴&导出

↓下拉查看更多示例

示例 分隔表达式								
2+3;Res+2	FX 2	Ca +	⁶ 3	;;	Res	- Ci +	^{FX} 2	=
	表达式	。笛-	个计算	1 2+3	它的结	果在領	至二个	表认式

上面的表达式包含两个子表达式。第一个计算 2+3,它的结果在第二个表达式 当中加 2

注意: Res 是最近的计算结果。

×↔5;×+5								
	Х	<i>~</i> •	^{F2} 5	;;	Х	+	^{F2} 5	
10								
上面的表达式句今两个子	表达式		- 个 扣	5 赋值	绘 X	笛ーイ	、计省	X + 5 =

上面的表达式包含两个子表达式。第一个把 5 赋值给 X,第二个计算 X+5 = 10 (其中 X = 5)。

左/右结合		
SVI	#→□	V5

把左边的数字 (或表达式) 代入到求平方根函数

IIII55		IS51	
	#→□		

把右边的数字(或表达式)代入到求绝对值函数

<u> 变量 (扩展)</u>

结果变量

最近的计算结果保存在结果内存;当一个新的计算完成 的表达式显示时,结果内存的内容会进行更新。结果内 存帮助你的计算保持连续。

注意: 所有变量在矩阵/向量模式和复数模式下是不同的。

↓下拉学习如何使用变量。

拖放:拖动值(计算结果)到变量按键以保存这个值。

可选方式:按变量按键前面的 [保存到]按键以保存当前 值到变量。

示例	
赋值	
M ← 10 10	Shift $M = 100 =$
赋值 10 给 M, 注意这里 [Shift] + [9] 是 M 按键。
赋值&分隔表	長达式
X ← 5; X + 5 10	$X \leftrightarrow ^{F^2}5$;; $X + ^{Ca}^{F^2}5 =$
上面的表达式包含两个子 10 (其中 X = 5)。	表达式。第一个把 5 赋值给 X,第二个计算 X+5 =

自定义函数 (Fx)

注意:

所有变量在矩阵/向量模式和复数模式下是不同的 所有与图像关联的 Fx 方程都是在计算模式下

示例
通用方程
$$\left(5x^2-43\right)=3x(\frac{x}{2}+5)$$

线性方程组
 $5(x+y)=15;y=8(7+x)$

按键	功能
EQN Solve	二次方程求解器
EQN Solve	三次方程求解器
<pre> Y X Y X EQNs Solve </pre>	二元线性方程组求解器
X Z Y Z EQNs Solve	三元线性方程组求解器

选择适合目标方程的模式。

↓下拉显示更多示例

示例	按键
$2X^2 - 3X + 5 = 0$	
5	$P^{x}_{2} = -P^{x}_{3} = P^{2}_{5}$
2x ² -3x 5	
X+Y=2 & X-Y=3	
IX IY 2 1X -1Y 3	$\begin{bmatrix} GRP \\ 1 \end{bmatrix} = \begin{bmatrix} GRP \\ 1 \end{bmatrix} = \begin{bmatrix} FX \\ 2 \end{bmatrix} = \begin{bmatrix}$
=C2 3	

<u>注意:</u>

输入所有必要的系数 (一个接一个地). 键入 系数或按 [向上] 或者 [向下] 选择并更改值。

单位转换/常数表 单位转换器 > 常数表 代入表达式 加入收藏 复制 保存到变量 关闭

操作单位转换器

注意:当前结果会在单位转换器当中作为基值 **▼***下拉查看更多示例*

单位类目

长度	常见密度
面积	能量
体积	电荷
质量	功率
速度	照度
角速度	放射性活度
线加速度	日期
角加速度	时间
体积流率	温度
压强	燃料消耗量
力	

<u>总计:</u>

21 类 & 400+ 单位

常数表

常数	描述	值
A ₀	玻尔半径	5.291772086E-11
A ₁	第二辐射常数	1.438777000E-02
С	真空光速	2.997924580E+08
е	元电荷	1.602176487E-19
e ₀	介电常数	8.854187817E-12
ev	电子伏特	1.602176565E-19
F	法拉第常量	9.648534150E+04
Fc	费米耦合常数	1.166364000E-05
FR	第一辐射常数	3.741771530E-16
Fs	α-精细结构常数	7.297352570E-03
G	牛顿万有引力常数	6.674280000E-11
gn	标准重力加速度	9.806650000E+00
h	普朗克常量	6.626068960E-34
J	约瑟夫逊常数	4.835978700E+14
JC	焦耳常数	4.81600000E+00
k	波尔兹曼常数	1.380650400E-23
kC	库仑常数	8.987551800E+09
L	洛施密特常量	2.651646200E+25
Μ	摩尔气体常数	8.314472000E+00
Me	电子质量	9.109382150E-31
Mn	中子质量	1.674927211E-27
Moonacc	月球表面重力加速度	1.62000000E+00
Moone	月球表面的逃逸速度	2.38000000E+03
MoonMa	月球质量	7.35000000E+22
MoonMe	月球平均密度	3.34300000E+03
MoonMe	平均地月距离	3.844000000E+08
MoonR	月球半径	1.738000000E+06

↓*下拉查看更多常数*

常数	描述	值
mp	质子质量	1.672621637E-27
mu	原子质量常数	1.660538782E-27
Na	阿伏伽德罗常数	6.022141790E+23
R	里德伯常量	1.097373157E+07
S	斯蒂芬-波尔兹曼常数	5.670320000E-08
sosa	空气当中的声速 (20° C)	3.43000000E+02
SOSW	水中的声速 (20° C)	1.40200000E+03
ST	萨克尔-泰特洛德常数	-1.151707800E+00
SunAcc	太阳表面的引力加速度	2.74000000E+02
SunMa	太阳质量	1.989000000E+30
SunMe	太阳平均密度	1.40800000E+03
SunP	太阳功率	3.826000000E+29
SunR	太阳辐射	6.959900000E+08
t	摄氏温度	2.731500000E+02
u0	磁性常数	1.256637061E-06
vK	冯·克里青常数	2.581280744E+04
Vm	理想气体摩尔体积	2.241399600E-02

标绘(图像)方程

<u>注意:</u>所有Fx 方程图像与计算模式下的Fx 关联

■ 下拉显示一个示例

示例

使用克莱姆法则求解器 (或者函数) 求解 N 元线性方程组,其中 N 最大为 7。

TH 41

均形		
(a b c d Matrix Vector	步骤 1: 切换到矩阵/向量模式	
Cramer	步骤 2: 输入克莱姆法则函数	
$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	步骤 3: 输入一个代表线性方程组的矩阵	
1X + 2Y + 3Z + 4T = 5 6X + 7Y + 8Z + 9T = 0 2X + 4Y + 1Z + 3T = 5 5X + 7Y + 8Z + 9T = 6 [] [步骤 4: 输入系数 矩阵的每一行必须和线性方程 组中的每个方程相匹配。	

百分数计算

与普通的基本计算器不同,Calculator Infinity 支持专业的百分数计算。

X% = X ÷ 100

!!! Wrong Input !!!

Correct Input

输入的运算符 / 函数 / 表达式的优先级根据下表评 价。有相同优先级的运算符/函数/表达式会从左到 右运算。

优先级	运算符/函数/表达式
1 st	括号内表达式 ().
2 nd	需要特殊显示的函数。
	\sqrt{x} , $\sqrt[n]{x}$, $Log_a b$, $ x $, $\frac{x}{y}$, $\int_a^b dx$, C_n^k , P_n^k
3 rd	需要自变量并以一个封闭的括号")"结束的函 数。
	Sin, Cos, Tan, Sin ⁻¹ , Cos ⁻¹ , Tan ⁻¹ , Sinh, Cosh, Tanh, Log, Ln…
4 th	在输入值之后的函数。
	X ² , X ³ , X ⁿ , X ⁻¹ , X!, "", d, r, g, %.
5 th	乘法, 除法 (x, ÷).
6 th	加法,减法 (+, -).

解不等式

Calculator Infinity 官方并不支持不等式。然而, 图像是一个好用的解决它们的功能。

首先,所有的不等式需要化简为 F(X) >0 或者 F(X) < 0。请注意一旦把右边的项移动到左边必须乘以 负 1 (-1)。

第二步, 在 X-Y 平面标绘 F(X)。X 轴以上或以下 的部分 (取决于不同的不等式) 会是不等式的解。 第三步,使用捕捉工具 [◎] 得到解的分割点。

例如:

0.25X²> 36 必须化简为:

 $0.25X^2$ -36 > 0 其中 F(X) = $0.25X^2$ - 36.

F(X) = 0.25X² - 36 在图像页面中

X 轴以上的部分是不等式 0.25X² – 36 > 0 的解。 事实上,X的值应当小于-12 或者大于 12。