

按键	功能
Ð	浏览历史
;;;	表达式分隔符号
5	撤销(最多30步)
C	恢复(最多30步)
Shift 1	图像方程
Shift1 > ^{FX} 2	赋值自定义方程
Shift 1 3	打开 X-Y 坐标系页面
#↔⊟	示例/角度转换
Shiftt ► #↔=	SCI/ENG 计数法

分数 & 角度

按键	功能
Shift 1	输入一个示例
	输入一个带示例
Shift 1	输入度:分:秒 指示器
€ #⇔⊟	转换当前结果到(带)
	分数和角度形式

示例	
分数&角度	
$\frac{2}{7} + \frac{3}{4}$	
<u>29</u> 28	$=$ $\overset{\circ}{_{\#\leftrightarrow \boxminus}}$
2°45°15°-1°15°	FX 2 °"' F1 4 F2 0"' GRP 1 F2 0"'
1° 30' 15.00000"	$\stackrel{\text{GrP}}{1} \stackrel{\text{GrP}}{1} \stackrel{\text{F2}}{5} = \# \leftrightarrow \stackrel{\text{O}}{=} \# \leftrightarrow \stackrel$

变量(扩展)

结果变量

最近的计算结果保存在结果内存;当一个新的计算完成
 n表达式显示时,结果内存的内容会进行更新。结果内存帮助你的计算保持连续。

注意: 所有变量在矩阵/向量模式和复数模式下是不同的。

保存到变量

拖放:拖动值(计算结果)到变量按键以保存这个值。

<u>可选方式:按变量按键前面的 [保存到]按键以保存当前</u> 值到变量。

赋值运算 & M±

按键	功能
M+	把显示值加到存储值并存储
M-	把显示值减去存储值并存储
~·	赋值运算符

示例
赋值
$\int_{10}^{10} \frac{10}{10} = 10$
赋值 10 给 M, 注意这里 [Shift] + [9] 是 M 按键.
赋值 & 分隔表达式
$X \leftarrow 5; X + 5$ $X \leftarrow 25; X + 25 = 10$
上面的表达式包含两个子表达式。第一个把 5 赋值给 X, 第二个计算 X+5 = 10 (其中 X = 5)。

自定义函数 (Fx)

<u>注意</u>:

所有变量在矩阵/向量模式和复数模式下是不同的 所有与图像关联的Fx 方程都是在计算模式下

标绘(图像)方程

<u>注意:</u>所有Fx 方程图像与计算模式下的Fx 关联

标绘示例

示例

0.25 <i>X</i> ² -5	步骤 1: 输入关于 X 的方程
Graph OR Shiftt + GRP	步骤 2: 按 [Shift] + [1] (图像)
Graph Page Action Plot as F1	步骤 3: 选择目标方程

求解通用方程

按键	功能
CR + CR +	输入 "=" 符号
	求解方程 (正常按)
 7 7	分隔方程组中的方程

示例 通用方程 $(5x^2 - \frac{4}{3}) = 3x(\frac{x}{2} + 5)$ 线性方程组 5(x+y)=15; y=8(7+x)

按键	功能
R ^e Xi+	插入当前结果或表达式到 数据集
	打开统计页面 (平均值,总和,中位数)
n	样本数
x	平均数
Σx	总和
$\sum x^2$	总平方和
σ (x)	标准偏差
σ ₋₁ (x)	N-1 标准偏差
PDF	概率密度函数 (一般正态分布)
CDF	累积概率密度函数 (一般正态分布)

编辑 & 分类数据

类型	描述
默认进制	结果的进制。
自定义进制	表达式中数字的进制。

进制模式按键

按键	功能
	主菜单
	前一个计算
	下一个计算
Base	改变默认进制
2's	二进制补码
BASE	插入自定义进制
<<	向左移位
>>	向右移位

<u>注意</u>:结果会自动以合适的数据尺寸显示 (8, 16, 32 或 64 位有符号或无符号整型)。

进制计算示例

进制计算示例	
011 _{BIN} +0F _{HEX}	二进制的 011 加上十六进制的 0F 结果以二进制显示
BIN 0001 0010	01。泊木以一疋响亚小。
001<<2	十进制(默认进制)的 001 左
DEC 4	移位两次。结果以十进制显示
0100R101	010或101 (二进制). 结果以二
BIN 0000 0111	进制显示 (无符号 8 字节).

	<i>a+bi</i> omplex
按键	功能
i Z	虚数单位 (i = √-1)
r∠θ	极坐标 (模 乙角度)
Arg	幅角
Conj	共轭
	展开结果
° i⇔∠	转换结果到 极坐标/分数坐标形式

注意:

+几乎所有其他函数 (三角函数, 对数函数, 指数函数, 求和, 求积,...) 支持复数。

+积分,导数和方程求解器不支持复数模式。

复数计算示例

极坐标 / 直角	坐标
5+2i-√2∠45 4+1i	$\int_{-\infty}^{1} \frac{1}{2} \frac{1}{r^2} + \frac{1}{2} \frac{1}{$
√2∠45 是1+i.	
共轭	
Con(5-3i) 5+3i	Conj $\begin{bmatrix} 5 \\ - \end{bmatrix} \begin{bmatrix} 7 \\ 3 \end{bmatrix} \begin{bmatrix} 2 \\ i \end{bmatrix} =$
5-3i的共轭复数	
幅角	
Arg(2+2i) 45	Arg i^{2} + i^{2} i^{2}) =
2+2i的幅角,例如2+2	i 在极坐标中的角度
分数	
$2.5 - (3 \div 2)i$ $\frac{5}{2} - \frac{3}{2}i$	$\begin{bmatrix} x & 2 & 0 & \cdots & f^2 & 5 & -f^3 \\ (& 3 & 0 & 0 & i^3 & f^2 & 2 & 0 & i^4 \\ \end{array}$ $= i \leftrightarrow 2 i \leftrightarrow 2 i \leftrightarrow 2$

按键	功能
$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	插入/调整矩阵大小
	求逆矩阵
[]	转置
Det	行列式
Eigen	计算特征值
Cramer	克莱姆法则求解器
Cros	叉乘 (仅限向量)
Dot	点乘 (仅限向量)
[]	展开 / 分解结果矩阵

<u>注意:</u>

- + 空白元素的默认值为0。
- + 单行矩阵按照向量处理。

+ 几乎所有其他函数 (三角函数, 对数函数,指数函数, 求和, 求积……) 支持矩阵/向量。

+ 积分,导数和方程求解器不支持矩阵/向量模式。

插入/改变矩阵&向量大小

<u>注意</u>:移动光标 (工字梁) 到目标矩阵然后按 到改变它的大小。

矩阵/向量示例

求逆矩阵	
$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 4 & 0 \\ 0 & 1 & 2 \end{bmatrix}^{-1}$	
[<u>-1</u>]	$\begin{bmatrix} 1 & -0.5 & 0 \\ 0 & 0.25 & 0 \\ 0 & -0.12 & 0.5 \end{bmatrix}$
空白元素为0。	
叉乘	
[123]×[456]	
[]	(-3,6,-3)
矩阵转置	
$\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}^{T}$	
[=]	((1,2,3),(4,5,6))
按 🗊 转换结果到纯文本形式。	

矩阵 / 向量示例

注意:矩阵的每个元素必须与线性方程组的系数相匹配。 在上面的示例中 X=-6, Y=4, Z=1, T=0 是唯一解。

常用方程求解器

模式	功能
EQN Solve	二次方程求解器
EQN Solve	三次方程求解器
YX YX EQNs Solve	二元线性方程组求解器
X Z Y Z EQNs Solve	三元线性方程求解器

选择适合目标方程的模式

示例	按键
$2X^{2}-3X+5=0$	
5	$P_{2}^{F_{X}} = -P_{3}^{F_{3}} = P_{5}^{F_{2}}$
2x ² -3x 5	
X+Y=2 & X-Y=3	
EON RAD 1X 1Y 2 1X -1Y 3	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \end{array} \end{array} = \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \end{array} = \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} = \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} = \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} = \begin{array}{c} \end{array} \end{array} = \begin{array}{c} \end{array} \\ \end{array} \end{array} = \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} = \begin{array}{c} \end{array} \end{array} = \begin{array}{c} \end{array} = \end{array} = \begin{array}{c} \end{array} = \begin{array}{c} \end{array} = \end{array} = \begin{array}{c} \end{array} = \begin{array}{c} \end{array} = \end{array} = \end{array} = \end{array} = \begin{array}{c} \end{array} = \end{array} = \begin{array}{c} \end{array} = \end{array} = \end{array} = \end{array} = \begin{array}{c} \end{array} = \end{array} = \end{array} = \end{array} = \begin{array}{c} \end{array} = \end{array} = \end{array} = \end{array} = \end{array} = \begin{array}{c} \end{array} = \end{array} = \end{array} = \end{array} = \end{array} = \begin{array}{c} \end{array} = \end{array} $
=C2 3	

<u>注意</u>:

输入所有必要的系数 (一个接一个地). 键入系数或按 [向上] 或者 [向下] 选择并更改值。

按键	功能
R ^s Xi+	插入当前结果或表达式到
	数据集 XY, XY, XY
	打开回归页面
	(类型,方程,误差)
n	数据对数量 (X,Y)
Σx	所有X的总和
Σy	所有Y的总和
∑xy	所有 XY 的总和
∑xy/∑y	所有 XY 的总和除以
	所有Y的总和

∑xy/∑y 可以看做 X 的权数总和/ 总权数,其中权数为 y

数据&回归

Tap to Edit the Value

x²+2x-15

Factored

(x - 3)(x + 5)

在 iPad 上的 Streamline 计划

Streamline 是一个高级历史功能,显示计算的历史更进一步地,对前面的计算进行编辑和操作。

按键	功能
Simplify	化简方程
Expand	展开多项式
Factor	对一个整数或多项式 分解因式
Evol ~	<u></u> 什質:丘柳城田
Eval≈	伯异处似纪术
Plug In	把变量代入方程
Save	把结果保存到变量或者 Fx 函数

注意:

+ 所有曾经在 streamline 显示的运算是已经打开的,方 程需要在运算之前输入。

+所有运算都应用到最近(最后)结果。

+代入运算应用于 XYZ 变量。其他变量是自动代的。

代数运算示例

化简	
$\frac{\text{ALG} \text{ RAD}}{\text{Input}}$ $1-\text{Sin}(\textbf{X})^2$ Simplified $\text{Cos}(\textbf{X})^2$	$ \begin{array}{c} \overset{\text{OPP}}{1} & -\overset{\text{Ps}}{-} & \text{Sin} & X &) & X^2 \\ \end{array} \\ \end{array} \\ = & \begin{array}{c} \text{Simplify} \end{array} $
Note: $Sin^2(x) + Cos^2(x) = 1$	
展开	
Input $\frac{x^2+5}{x-2}$ $\frac{5}{x-2} + \frac{x^2}{x-2}$ Expanded Form $2 + x + \frac{9}{x-2}$	Shift \div X X ² $+$ 5 X $-$ 2 = Expand
因子分解	
Alig RAD Input CLR 7! 5040 Factored 2 ⁴ 3 ² 5×7	7 X! = Factor
$7! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7, 6$	$= 3 \times 2, 4 = 2 \times 2$
近似	
$\frac{\text{ALG}}{\text{Input}} \xrightarrow{\text{RAD}} \text{CLR}$ $\frac{1}{\sqrt{2}}$ Evaluated 0.7071067811865	Sin π Shiftt \div ⁸ ¹ 4 = Eval \approx

代数环境菜单

Tap To Open Context Menu $-x^2 + 10 x + 25$ R = 10 x + 25Plug Eval Simpl >

按键	功能
□_ ###	插入选中的方程到输入框
	复制方程为纯文本
Eval≈	估算近似值
Plug (In)	代入变量到选中的方程
Simpl Simplify	化简选中的方程
Exp Expand	展开选中的多项式
Fact Factor	对 选中的数字/多项式 分解因子
F1, F2, F3	保存 选中的方程/数字 到 Fx 函数
X, Y, Z, M	保存 选中的数字 到 X, Y, Z, M 变量

积分,导数,极限

不定积分	
$\int_{0}^{\text{ALG}} \frac{x^{\text{ALG}}}{3x^2 + \cos(x) dx}$ $\frac{x^3 + \sin(x)}{x^3 + \sin(x)}$	$\int dx = \frac{1}{3} X X^2 + \frac{1}{4} \cos X =$
保持左&右自变量为空计算	拿不定积分
导数	
$\frac{\delta(\sin(\chi)+5\chi,)}{5+\cos(\chi)}$	δ/dx Sin X) + Cs F2 5 X =
保持第二个自变量为空计算	了一个方程的导数
极限计算	
$\lim_{X \to +\infty} \left(\frac{2 \times^2 + 5}{3 \times^2 + 25} \right)$ $\frac{2}{3}$	Lit ^m Shift \div 8 FX 2 X X ² $+$ Ca F ² 5 To 3 X X ² $+$ Ca FX 2 F ² 5
极限按键 (iPhor Lim Lim	le) 极限按键 (iPad) Lim ^{-∞} Lim Log Lim-∞ Log Lim-∞

注意:只支持部分常用类型极限问题

TLor(F, Variable, Degree, Value)

声明	描述
F	函数
Variable	自变量
Degree	最高阶数
Value	A 点

TLor 返回关于[Variable]的[F]在点[Value]处 按照最高[Degree]次幂的泰勒级数展开。

